Challenges and Practical Solutions to Managing Municipal Stormwater Systems

Stories from the end of the pipe

Project Partners

- City of Dover, NH Staff
- UNH Stormwater Center

STORMWATER CENTER

- NH Department of

Environmental Services

Berry Brook Watershed Management Plan -Implementation Projects Phase III

Final Report to
The New Hampshire Department of Environmental Services Submitted by

The City of Dover and the UNH Stormwater Center
December, 2017
https://www.unh.edu/unhsc/berry-brook-project

Berry Brook BMPS $\begin{array}{lllll}0 & 0.0450 .09 & 0.18 & 0.27 & 0.36 \\ & & & & \end{array}$

Legend

New BMPs

BB_Watershed

BMPs

Installations include:

- 12 bioretention systems,
- a tree filter,
- a subsurface gravel wetland,
- one acre of new wetland,
- daylighted and restored 1,100 linear feet of stream at the headwaters and restored 500 linear feet of stream at the confluence including two new geomorphicallydesigned stream crossings
- 3 grass-lined swales
- 2 subsurface gravel filters
- an infiltration trench system
- 3 innovative filtering catch basin designs

Funding and Results

Funding: 3 watershed assistance grants (sec 319) and 1 aquatic resource mitigation grant, all with $\min 40 \%$ match from the city.

Berry Brook Project: Getting to $\mathbf{1 0 \%}$	
Cost	$\$ 1,322,000$
Grant Funds	$\$ 793,000$
Match (min estimate)	529,000
BMPs	26
DCIA Reduced	37 acres
TSS Reductions (lb./yr.)	57,223
TP Reductions (lb./yr.)	201
TN Reductions (lb./yr.)	1,127

Typical Project Approach

Develop a watershed management plan (a-i)

Optimize placement of BMPs for maximum gain

Implement

Model

Outreach and education on project results

Report

Typical Project Approach

2011 Watershed Restoration Grants for Impaired Waters

Section B: PRE-PROPOSAL APPLICATION FORM
 Watershed Restoration Grants for
 Impaired Waters

```
I. Proposal Title
    Berry Brook Watershed Restoration through Low Impact Development Retrofits in an Urban Environment
II. Contacł Information
    Primary contact person:
    Organization:
    Street address:
    City, State, ZIP:
    Day phone: (603) 516-6094 Fax: ( ) Email: dean.peschel@ci.dover.nh.us
    Secondary contact person:
    Organization:
    Street address:
    City, State, ZIP:
    Day phone: (603)862-4024
        Durham, NH, 03824
        Email: robert.roseen@unh.edu
Signature of Applicant:
```



```
Date of signature: 9/2/10
```


III. Project Summary

Berry Brook is a highly urbanized 1st order stream located in Dover, NH, that is classified as Class B waters. . The Brook is located in a built-out, 164-acre watershed with 25% impervious cover (IC) and includes medium-density housing with commercial and industrial uses. The stream has been placed on the NHDES 2006 Section 303(d) list and is impaired for primary recreation and for aquatic life. The source of this impairment includes urbanization resulting in an increase of pollutant mass and runoff volumes from stormwater.

And then you implement -

 Inside a historic 40,000 sf slow sand filter

National Historic Preservation Act Section 106 Compliance for the Regulatory Program

Reality

Redesign

Reconfigure

... and optimize

Again...

And more implementation...

Innovation Decision Process

And more adaptation...NDP!

Maintenance Must be Included in the Design Process

Not by the designers, but by the people who are expected to do it and pay for it

Decadal Reflections: Cart Before the Horse

The expression cart before the horse is an idiom or proverb used to suggest something is done contrary to a conventional or culturally expected order or relationship.

"Bioretention Design"

UNIVERSITY OF NEW HAMPSHIRE STORMWATER CENTER

bioretention design

381,000 results!

About 381,000 results (0.33 seconds)
Images for bioretention design

${ }^{[P D F]}$ Bioretention Design Specifications and Criteria www.leesburgva.gov/home/showdocument?id=5057 *
Bioretention is flexible in design, affording many opportunities for the designer to be creative. This design guide first goes into a step by step process of how to size and design bioretention to accommodate the design storm runoff amount. After that, how to integrate the bioretention facility(ies) into the overall site design is ...
${ }^{\text {[PDF] }}$ Bioretention Manual - CT.gov
www.ct.gov/deep/lib/deep/p2/raingardens/bioretention_manual_2009_version.pdf * Mar 6, 2013 - This manual has been prepared to replace and update the 1993 edition of the Design. Manual for Use of Bioretention in Stormwater Management. This manual builds on that work and further identifies methodologies, practices, and examples of bioretention. Changes that were made focus primarily on four.

${ }^{\text {[PDF] }}$ Designing Bioretention Areas

https://www.unce.unr.edu/programs/sites/nemo/files/.../DesigningBioretentionAreas.pd... "Bi. i i h i hi h. "Bioretention is the process in which contaminants and sedimentation are removed fff Si from stormwater runoff. Stormwater is collected into the treatment area which. it fb ffti db d consists of a arasc huffor strin sand hed ponding aroa oroanic laver or mulch laver I ti ild It " planting soil and

Comparison of Pollutant Removal Efficiency Planted vs Grassed Bioretention

\square Planted Bio (Avg. 3) ■ Grassed Bio

Pollutant

Grassed vs Planted Surface IR

Average Infiltration Rates of a Planted (blue) versus Grassed (green) Bioretention Systems Over Time
70.0

The Site Today

Add it to the toolbox!

Inevitably we need to expand our toolbox

The more SCMs/Modifications /Innovations the better

There is not a lot of room for "turf" battles!

Cart Before the Horse?

Are we focusing too much on modeling?

Are we focusing enough on implementation and adaptation?

Results

Not one single installation was installed as originally planned

The entire project required flexibility in relation to all BMPs installed

Overall goals of the project (disconnection of EIC) was considered paramount objective over actual implementation sites.

Are we at the Finish Line or the Starting Line?

If necessity is the mother of invention?...

 STORMWATER CENTER

Need for Innovation

- "Boulanginator"
(subsurface gravel filter) mimics performance of
PA with regular pavement.
- The hydraulic inlet and outlets are controlled through perforated pipes and underdrains.
- treat runoff from 1.96 acres and 0.61 acres DCIA

Boulangenator Performance

Grove St : Subsurface Gravel Filter - Water Elevation

Need for Innovation

- In HSG A installed an infiltration trench between two conv CBs
- A simple but effective adaptation instead of solid pipe.
- Treats runoff from 3.36 acres and 1.04 acres DCIA

Modeled Performance

Infiltration Trench (2.41 in/hr) BMP Performance Table		Hillcrest IT Performamance					
		$\begin{array}{r} 100 \% \\ 90 \% \\ 80 \% \\ 70 \% \\ 60 \% \end{array}$					
BMP Capacity: Depth of Runoff Treated from Impervious Area (inches)	0.1						
Runoff Volume Reduction	34\%	50\%					
Cumulative Phosphorus Load Reduction	33\%	$\begin{aligned} & 40 \% \\ & 30 \% \end{aligned}$					
Cumulative Nitrogen Load Reduction	64\%	20\%					
Cumulative TSS Load Reduction	50\%	0\%	Runoff Volume	Cumulative	Cumulative	Cumulative TSS	Cumulative Zinc
Cumulative Zinc Phosphorus Load Reduction	81\%		Reduction	Phosphorus Load Reduction	Nitrogen Load Reduction	Load Reduction	Phosphorus Load Reduction

SGWS Costs

Site Characteristics and System Treatment Capacity								Annual Removals (lbs/yr)	
Project	Impervious Area (sf)	Impervious Area (acres)	Best Management Practice	Hydrologic Soil Group	Depth of Runoff Treated from Impervious Area (in)	Total Suspended Sediment	Total Phosphorus	Total Nitrogen	
Hillcrest IT	39,640	0.91	Infiltration Trench	B	0.10	97	0.35	8.8	

Water Quality Volume	Hillcrest IT
Drainage Area (ft^{2})	39,640
\% Impervious Cover	100\%
Impervious Area (ft^{2})	39,640
Conv WQV (ft ${ }^{3}$ (@ P = 1.0in)	3,303
System Treatment	
System Area (ft^{2})	10
Reservior Storage (ft^{3})	400
System Storage (ft^{3})	320
Rainfall Depth Treated (in)	0.10

Marginal Extra Materials
 Marginal Cost Difference

Need for Innovation

Sectional Media Box Filter Design - version 3

August 2017

- Filtering Catch Basin Designed to replace conv DSCB where applicable
- This system was the third iteration
- The City has purchased four additional filtering catch basins and will install them in other areas throughout the city.
- The system is designed to treat 0.5 acres (0.25 acres/section) of IC per section and costs 2,400 per

In Operation

Update May 2018

Update May 2018

Update May 2018

New Project Approach

Desktop designs invariably change when in-depth site specific investigations begin.

Better to quickly and coarsely develop a handful of candidate sites

Conduct inexpensive site queries of local areas of concern to further develop a practical mitigation approach.

Implement where and however much feasible
municipal implementation efforts adapt or innovate "text book" research-based designs with what is practical for a public works department working in an urban setting leading to lower costs and more effective systems.

New Project Approach

Large Project approach vs. every day counts approach

For the largest seacoast community there is:

- Over 2800 catch basins
- 65 linear miles of pipes
- 200 outfall locations

When all this infrastructure was originally designed the approach was very different.

Correction is not going to happen overnight!

End? More Cart Before the Horse?

Stormwater Modeling

Do we know what we are doing?

Yes, climate change gives us pause to think, but IC is the 800 -pound gorilla

Design Dimensionless Hyetographs

Sampling of Observed Hyetographs

Sizing Details

$\left.$| System | WQV ft
 $\left(\mathrm{m}^{3}\right)$ | Actual
 WQV ft |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathrm{m}^{3}\right)$ | | | | \% of |
| :---: |
| normal |
| design |\quad| Rain |
| :---: |
| Event in |
| (mm) |\quad| Sizing |
| :---: |
| Method | \right\rvert\,

$$
W Q V=\left(\frac{P}{12}\right) \times I A
$$

Dynamic Bioretention Sizing

$$
A f=V w q * \frac{d f}{(i(h f+d f) t f)} \quad Q=C d A \sqrt{2 g h}
$$

Oyster River Road

Cumulative Distribution Frequency

Durham Bio-5
 Cumulative Distribution Frequency

Design Storage Volume (DSV) - runoff depth from IA (in)

Analyte	Depth txt	Modeled RE	Measured RE
TSS	0.1	48	75
TZn	0.1	57	75
TN	0.1	55	23
TP	0.1	19	53

Analyte	Depth txt	Modeled RE	Measured RE
TSS	0.23	70	81
TZn	0.23	88	86
TN	0.23	60	27
TP	0.23	35	45

Region 1 Gl Cost Estimates

BMP (From Opti-Tool)	Cost (\$/ft $\left.{ }^{3}\right)^{1}$	$\text { Cost }\left(\$ / f t^{3}\right)-2016$ $\text { dollars }^{6}$
Bioretention (Includes rain garden)	$13.37^{2,4}$	15.46
Dry Pond or detention basin	$5.88{ }^{2,4}$	6.80
Enhanced Bioretention (aka-Bio-filtration Practice)	$13.5{ }^{2,3}$	15.61
Infiltration Basin (or other Surface Infiltration Practice)	$5.4{ }^{2,3}$	6.24
Infiltration Trench	$10.8^{2,3}$	12.49
Porous Pavement - Porous Asphalt Pavement	$4.60{ }^{2,4}$	5.32
Porous Pavement - Pervious Concrete	$15.63{ }^{2,4}$	18.07
Sand Filter	$15.51{ }^{2,4}$	17.94
Gravel Wetland System (aka-subsurface gravel wetland)	$7.59{ }^{2,4}$	8.78
Wet Pond or wet detention basin	$5.88{ }^{2,4}$	6.80
Subsurface Infiltration/Detention System (akaInfiltration Chamber)	$54.54{ }^{5}$	67.85

${ }^{1}$ Footnote: Includes 35% add on for design engineering and contingencies https://www.unh.edu/unhsc/news/ms4-tools
https://www3.epa.gov/region1/npdes/stormwater/ma/green-infrastructure-stormwater-bmp-cost-estimation.pdf

GI Implementation Cost Comparisons

Costs per disconnected acre of IC			
	PA	NY	NH
Actual	$\$ 250,000.00$	$\$ 320,000.00$	$\$ 30,000.00$

	DATE	Event Rainfall (in)	Antecedent (day)	Peak Flow Reduction	Volume Reduction
	5/27/2018	0.15	3.6	88\%	94\%
	6/1/2018	0.27	4.3	95\%	59\%
	6/4/2018	4.94	2.7	72\%	28\%
	6/23/2018	0.92	4.1	76\%	48\%
	7/25/2018	1.50	3.1	73\%	34\%
	8/4/2018	0.97	6.8	42\%	-31\%
	8/9/2018	2.46	4.5	76\%	62\%
Statistics:	min	0.15	2.67	0.42	-0.31
	med	0.97	4.13	0.76	0.48
	mean	1.60	4.18	0.74	0.42

Chatham Hydrograph and Hyetograph

Gravel Wetland BMP Performance Table				
BMP Capacity: Depth of Runoff Treated from Impervious Area (inche s)	0.1	0.2	0.3	0.4
Cumulative Phosphorus Load Reduction	19%	26%	34%	41%
Cumulative Nitrogen Load Reduction	55%	60%	66%	71%
Cumulative TSS Phosphorus Load Reduction	48%	61%	72%	82%
Cumulative Zinc Phosphorus Load Reduction	57%	68%	76%	83%

Questions???

