

Belle Isle Marsh

MVP Assessment - Year 2 June 14, 2023

Regional Coordination to Protect Communities & Preserve Marsh

Year 1 - Climate Vulnerability Assessment

- > Flood Risk
- > Future Conditions
- Strategy Identification
- Stakeholder & Community Engagement
- Year 2 Alternatives & Feasibility Assessment
- Alternatives Analysis
- Cumulative Impact Analysis
- Stakeholder & Community Engagement

Belle Isle Marsh

- What is Belle Isle Marsh?
- Why Belle Isle Marsh?

Habitat and Community Vulnerability

.000

WOODS HOLE

GROUF

⊘ =

- Sea Level Rise
- Marsh Migration
- Coastal Flooding
- Priority Sites

Nature-Based Solutions

- Strategy Toolbox
- **Conceptual** Alternative Development

Performance Modeling

- Flood Extent Reduction
- Flood Depth Reduction

Next Steps

Belle Isle Marsh

+

0

What is Belle Isle Marsh?

- Largest remaining salt marsh in Boston Harbor
- The land of Belle Isle Marsh is the traditional unceded territory of the Massachusett people
- 300+ acres
- Spans East Boston, Revere, and Winthrop
- Over 250 bird species
 - 7 threatened / endangered

Why is Belle Isle Marsh important?

- It's Beautiful!
- Storm Protection
- Clean Water
- Cooling from the Summer Heat
- Coastal Wildlife Habitat
- Carbon Storage
- Area of Critical Environmental Concern Designation

"It is one of the most biologically significant habitats in Boston"

- US Fish & Wildlife Service

• Habitat and Community Vulnerability

Environmental Challenges

- Sea Level Rise
- Storm Flooding
- Coastal Squeeze
- Mosquito Ditching
- Invasive Species
- Historic Fill & Berms

Marsh Migration with Sea Level Rise

Present Day

Upland

2100, 7.7 ft SLR

Marsh Migration with Sea Level Rise

Present Day

Migration into critical infrastructure

2100, 7.7 ft SLR

Flood Risk & Site Selection

Relative Flood Exposure

Asset Criticality

Permitting Feasibility

Construction Feasibility

Community Benefit

Habitat Restoration Value

100%

Flood Risk & Site Selection

Relative Flood Exposure

Asset Criticality

Permitting Feasibility

Construction Feasibility

Community Benefit

Habitat Restoration Value

10%

100%

^{*} Nature-Based Solutions

Nature-Based Solutions

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

Living Shorelines

existing or

for most areas

except high

wave energy

environments.

VEGETATION ONLY -Provides a buffer

to upland areas and breaks small waves. Suitable for low wave energy environments.

EDGING -Added structure

shoreline, reduces vegetated slope wave energy, and in place. Suitable prevents erosion. Suitable for most areas except high wave energy environments.

BREAKWATER -(vegetation optional) - Offshore structures intended to break waves, reducing the force of wave action, and encourage sediment hardened shoreline settings and sites accretion. Suitable for most areas.

Coastal Structures

REVETMENT -

Lays over the slope of the shoreline and protects it from erosion and waves. Suitable for sites with existing structures.

BULKHEAD -Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for high energy with existing hard shoreline structures.

National Oceanic and Atmospheric Administration

Living Levee – Watson Park, Braintree, MA

Bennington St and Fredericks Park

Adaptation Goals

- Flood Protection
- Habitat Enhancement
- Public Access

Morton St

Adaptation Goals

- **Flood Protection**
- Habitat Enhancement
- Public Access

Performance Modeling

+

0

Modeling of Alternatives (MC-FRM)

Morton St, Winthrop

2070 1% Storm Flood Extent

- Project serves as a barrier to all flood water from Belle Isle Marsh
- Aligning the design crest within the marsh protects an additional 1 commercial and 8 residential buildings
- · Protection/raising Saratoga St is necessary for preventing back flooding

Bennington St & Frederick's Park

2070 1% Storm Flood Extent

- Project serves as a barrier to all flood water from Belle Isle Marsh
- Back flooding from Chelsea Creek and Revere Beach / Roughan's Point reach the project area

Bennington St & Frederick's Park

2070 1% Storm Flood Extent

- Project serves as a barrier to all flood water from Belle Isle Marsh
- Back flooding from Chelsea Creek and Revere Beach / Roughan's Point reach the project area
- Raising Bennington St to 14.1 ft NAVD88 keeps it dry

Risks of Back Flooding

Bennington St & Frederick's Park

2030 25% Storm Flood Extent

Independent benefits are still gained

Flood extent is reduced

Inland flood depths decrease even if backflooding occurs

Next Steps

+

0

Next Steps

Thank You

cofsthun@woodsholegroup.com

Science in the Marsh

Boston Harbor Sea Level Rise Projections

- > Projections from Resilient MA (DeConto and Kopp, 2017)
- > Labels in flags are relative sea level rise from baseline year of 2008 (1999-2017) in MC-FRM
- SLR Projections are regionally representative of Provincetown to Salisbury MA

Flood Probability Modeling – MC-FRM

Massachusetts Coastal Flood Risk Model

MC-FRM Modeled Storm Scenarios

AEP	Storm Level	Time Horizon	Sea Level Rise Scenario	Maximum Water Level (ft NAVD88)
5%	20-year Storm	2050	2.5 ft	11.1
2%	50-year Storm	2030	1.3 ft	10.0
1%	100-year Storm	2070	4.3 ft	13.6
0.2%	500-year Storm	2050	2.5 ft	13.0

Movement of the Tides in Belle Isle Marsh

Modeled **salinity** during a small storm

Salinity, PSU

Morton St

Suffolk Downs

Bennington St & Frederick's Park

Belle Isle Marsh

nington Street

Water Surface Elevations

Approximate Design Alignment

1% Storm in 2070, Flooded Under Proposed Conditions

1% Storm in 2070, Flooded Under Existing Conditions

No measurable unintended impacts

Existing: 13.6 ft With Design: 13.6 ft

Existing: 13.6 ft With Design: 13.6 ft

Existing: 13.6 ft With Design: 13.6 ft

Flood Depth Reduction

Independent benefits are still gained

Flood extent is reduced

Flood depths decrease by up to 1 ft in areas still wet

