Population dynamics and restoration ecology of anadromous river herring

Mystic River Science Initiative Forum – April 30, 2019

Matt Devine^{1,2}, Allison Roy^{1,2,3}, Andrew Whiteley⁴, Benjamin Gahagan⁵, Michael Armstrong⁵, and Adrian Jordaan¹

¹Department of Environmental Conservation, University of Massachusetts, Amherst ²Massachusetts Cooperative Fish & Wildlife Research Unit ³U.S. Geological Survey, Massachusetts ⁴Department of Ecosystem and Conservation Sciences, University of Montana ⁵Massachusetts Division of Marine Fisheries

Funding National Fish and Wildlife Foundation Atlantic States Marine Fisheries Commission Massachusetts Division of Marine Fisheries The Nature Conservancy

Collaborators

US Fish and Wildlife Service Connecticut DEEP Rhode Island DEM Massachusetts DMF Massachusetts DER New Hampshire DFG Maine DMR Mystic River Watershed Association Various Conservation Commissions

Population Data From Adult Run Counts

- Monitored a number of ways:
 - Electronic
 - Video
 - Citizen science
- Providing data on:
 - Number of adults returning annually
 - Timing of returns
 - Adult size/age structure

How Many Fish Are There Initially?

Data Gaps

11111111111111111

Juvenile production

Sources of mortality

Freshwater

Standardized monitoring

Suitable habitat

Vilitalitatilitatility

Research Objectives

Population Dynamics

Investigate juvenile density, growth, and mortality in FW lakes
 -Explore variability among lakes and from year-year

-Examine abiotic/biotic factors influencing productivity

2. Evaluate relationship between adult counts and juvenile densities

Restoration Ecology

Evaluate response to restored habitats

 Magnitude and timing of recovery
 Comparisons to natural runs

2. Model habitat suitability for prioritizing habitat restoration

Study Lakes

- 2014–2018
- Sampled 32 coastal lakes
- 5 lakes sampled all years
- Estimate of adults
- Stocked & natural runs

Fish Sampling Methods

100' X 15' 1/16" mesh

- 5–10 hauls/night
- June, July, August
- Random sampling
- Enumerated all herring
- 30/haul for age & growth

North American Journal of Fisheries Management

Article

Precision and Relative Effectiveness of a Purse Seine for Sampling Age-0 River Herring in Lakes

Matthew T. Devine , Allison H. Roy, Andrew R. Whiteley, Benjamin I. Gahagan, Michael P. Armstrong, Adrian Jordaan

First published: 22 March 2018 | https://doi.org/10.1002/nafm.10065

Habitat Quantity and Quality

Quantity

- Surface area
- Depth
- Shoreline distance

Quality

- Phosphorous
- Nitrogen
- Dissolved Organic Carbon
- Chlorophyll-a
- Temperature
- Dissolved Oxygen
- Secchi depth
- Zooplankton

Density: Variation Within and Among Lakes

Density-Dependent Recruitment

- Largely influenced by # of adults
 - 64% deviance explained (GAM)
- Non-linear
- Uncertainty at high densities
- Decline in production (1k/ha)

Adult density (herring/ha upstream habitat)

Upper Mystic Lake

Otoliths Provide Growth History

Otoliths on the Mind

Density-Dependent Individual Growth

Growth negatively related to density

Leads to variation in size-at-age

Daily Growth Related to Temperature

Grow Fast, Leave Early: Recipe for Survival?

August 3, 2016

Consequences of Stranded in Lakes

- Increased competition
- Slower growth rates
- Thermal stressors
- Altered diet (less preferable items)
- Limited nutrient flux

Challenges to Emigration

- Drought
- Lake drawdowns
- Low flow events

July 23, 2016

Average # herring/haul U. Mystic June: 80 July: 520 Aug: 307

> Horn June: 292 July: 262 Aug: 23

Documented successful spawning & reproduction in first year!!!

Initial Results

2018 Length Data

- Achieve larger sizes initially in restored sites relative to long-term sites
- Density-dependence
- Abundant zooplankton prey

Management Implications

- Limits to any single restoration activity

 Models to help interpret expected productivity increases
- Prioritize increasing run size <u>AND</u> habitat area
 Mystic watershed a model example of success
- Water quality (temp, DOC) key to growth/survival
- Appropriate water levels essential for emigration

Thank You

mtdevine@umass.edu

• potanipo • sabbatia • chebacco • horn • mystic • whitmans • winnecunnet • great herring

Negative Effects of Dissolved Organic Carbons

Candidate Models	k	AICc	ΔAICc	Wi	R ²
★DOC * Julian	6	153.31	0.00	0.94	0.76
Temp	4	160.52	7.21	0.03	0.30
Chl-a	4	161.51	8.26	0.02	0.34
DOC + Julian	4	162.33	9.02	0.01	0.23
Temp + Chl-a	5	163.24	9.82	0.01	0.33

Density negatively related to DOC

"Browning" of water limits productivity

Complex physical/biological effects

Karlsson et al. 2009 Finstad et al. 2014; Craig et al. 2017

Zooplankton Dynamics

0

- Larger bodied
- Preferred by herring
- Peak in June then steady decline
- Common, small crustaceans
- More abundant than cladocerans
- General decline

- Most abundant/smallest order
- Largest variation across lakes
- Heavy predation by larvae

Study Lakes – Physical & Chemical Summary

Variable	Min	Max	Mean	Std. Dev
Area (ha)	8.01	1894	305.66	528.20
Mean depth (m)	1.50	15.20	4.78	3.48
Maximum depth (m)	1.80	53.10	10.07	9.26
Shoreline length (km)	1.38	64.69	10.58	13.82
Elevation (m)	-0.54	146.66	23.95	30.70
Surface temperature (°C)	17.66	28.74	24.16	2.46
Dissolved organic carbon (mg C l^{-1})	1.49	11.10	4.64	1.89
Secchi Depth (m)	0.20	5.80	1.86	1.02
Total phosphorous ($\mu g P l^{-1}$)	0.61	71.50	25.11	14.71
Total nitrogen (mg N l^{-1})	0.12	1.86	0.50	0.33
Chlorophyll-a ($\mu g l^{-1}$)	0.33	160.77	15.47	24.34

