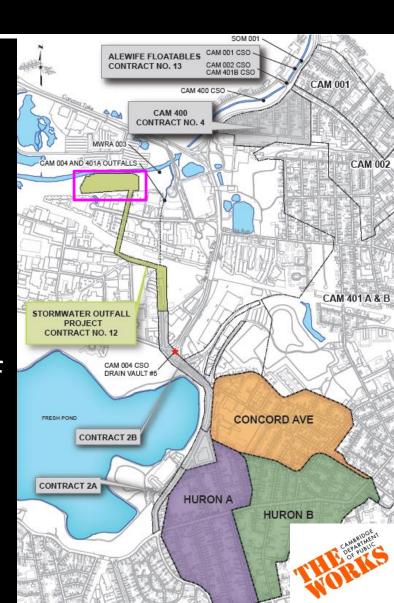
Alewife Constructed Wetland:

stormwater attenuation, water quality improvements, ecological enhancements and recreational opportunities

Project Beginnings


- MWRA Long-Term CSO Control Plan (LTCP) for Alewife Brook
 - reduce CSO volume to Alewife Brook by 85%
- Designed to meet the goals and objectives of DCR's Master Plan for Alewife Reservation
 - Provides significant public benefit and enhances ecological resources

Project Background

MWRA's LTCP for CSO Control

- Sewer separation of CAMoo4 (Huron A, Huron B and Concord Ave)
- Closure of the CAMoo4 regulator
- Reduces volume and frequency of CSOs to the Alewife Brook
 - 50mg annually → 7.3mg
 - 63 activations per year → 7

New Outfall Required for Sewer Separation

Original Objectives:

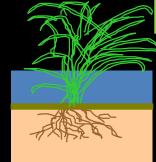
- Attenuate flows through detention
- Meet local, state and federal regulatory standards
- Lower maintenance/ self-sustaining
- Enhance the quality of stormwater

Conventional Stormwater Basin Design

- Designed to be normally dry
- Visually unappealing- vertical/steep sides
- Bland appearance- no relief
- Minimal water quality enhancement
- Little or no attention to habitat enhancement

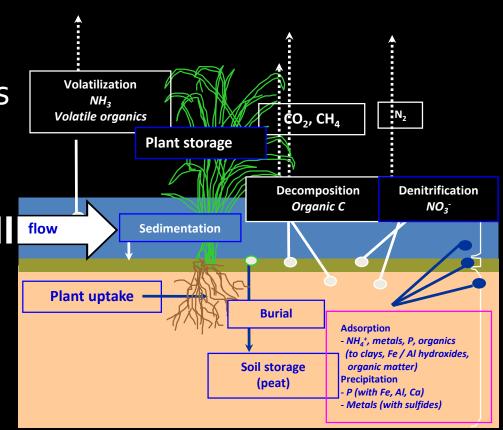
Stormwater Wetland Systems A Better Option

- Attenuates stormwater discharges
- Creates a sustainable and natural hydrology
- Reduce invasive plants, promote natives
- Maximizes pollutant removal
- Addresses components of the DCR Master Plan
 - Habitat, recreation, aesthetics



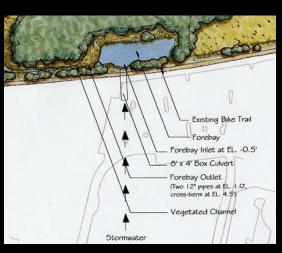
Stormwater Wetlands and Water Quality

Stormwater wetlands provide water quality treatment through the interaction of the water, soil and plants.

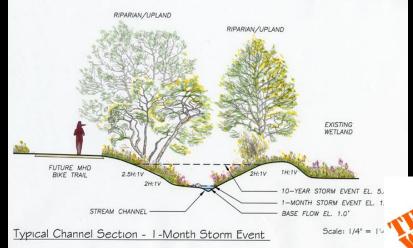


Pollutant Removal Pathways within a Stormwater Wetland

- Sedimentation
- Adsorption to Sediments
- Physical filtration
- Microbial breakdown
- Plant Uptake
- Extra Detention and/or Retention



Plan View of Wetland System



Forebay and Swale

Stormwater Wetland

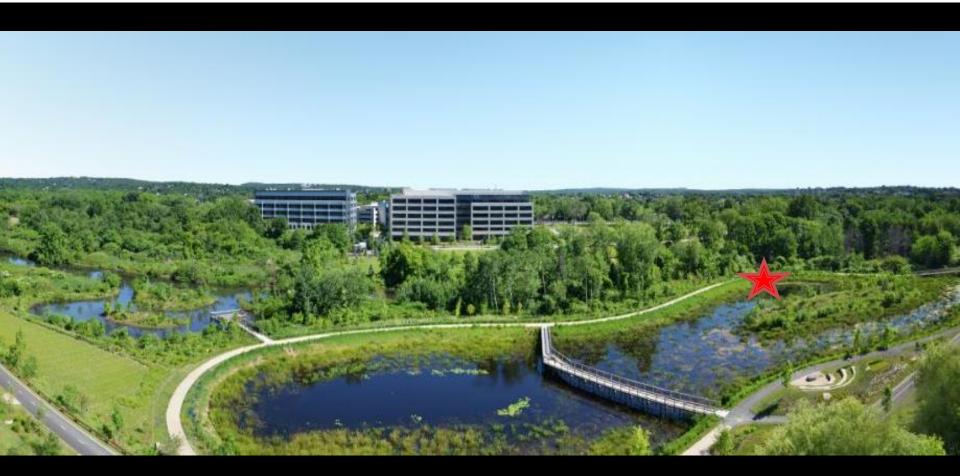
Stormwater Wetland

Footprint = 3.4 acres

Detention = 10.35 AF

Habitat Diversity

Low Marsh


High Marsh

Open Water

Upland Island

Outfall

36" outfall controlled with a 12" underflow and high level weir Maximize detention time

Oxbow: Additional Wetland Creation

- Additional 0.71 acres
- Oxbow
 - Replaces wetland used in channel creation
 - Replaces floodplain volume taken to create the stormwater wetland.
 - Designed for possible River Herring spawning with pond and wetland fringe.

Alewife Reservation Project Benefits

Fully integrated with DCR Alewife Reservation and Greenway Master Plan:

- Water Quality Improvements: 3.4 acre treatment wetland, and future closure of the CAM004 regulator
- Ecological enhancements of fish and wildlife habitat quality
- Mitigation of invasive plant species
- Improved site amenities
- Educational and recreational opportunities

Habitat Creation

- Deep, emergent and high marsh
- Wet meadow, broadleaf floodplain and open water
- Scrub/shrub and riparian woodland
- Over 120,000 new wetland plants
- Over 3,800 new upland plants

Site Amenities

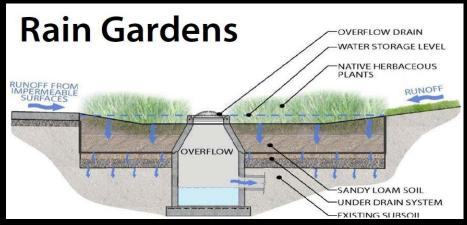
- Multi-use connector path (Mass DOT)
- Trails and boardwalks (1,600 linear feet)
- Overlooks (3)
- Amphitheatre
- Benches and bike racks
- DCR Kiosk and interpretive signage

Integrated Stormwater Treatment

Source Control

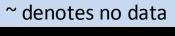
- Street Sweeping
- Renovate all existing catch basins to the BMP level
- Double number of catch basins
- Biobains/Rain Gardens
- Porous Pavement

In-System Treatments


- Grit pits, flushing system
- Isolation chamber

Final Polishing

Stormwater Wetland



Sampling Locations

Water Quality Results

	6/24/2014		8/26/2014		10/28/2014	
	Forebay	Wetland	Forebay	Wetland	Forebay	Wetland
Fecal Coliform (col/100ml)	<100	1,000	<100	100	1,000	100
E. coli (MPN/100ml)	<10	<10	<10	10	435	41
Ammonia (mg/l)	<0.1	<0.1	<0.1	<0.1	0.2	<0.1
T. Phosphorous (mg/l)	0.11	0.14	0.14	<0.02	0.07	0.06
TSS (mg/l)	19	16	6	2	8	5
Oil & Grease (mg/l)	ND	5	~	~	~	~
рН	8.03	6.96	8.19	7.5	6.98	6.47

Questions

