Mystic River Phosphorus Loading Study

Preliminary Results and Next Steps

Patrick Herron, Mystic River Watershed Association Mystic River Science Forum US EPA offices, Boston, MA April 30, 2019

Project Partners and Technical Steering Committee (TSC)

Mystic River Watershed Association (MyRWA) -Water quality monitoring, USGS flow gaging project management, TSC

MWRA -Water quality monitoring, financial support, TSC

MassDEP -Technical and policy support, technical steering committee, pond/ lake phosphorus load reduction analyses

EPA Region 1 -EPA Contractor support, water quality monitoring, laboratory analyses, technical and policy support, TSC, pond/lake load reduction analyses

EPA's Contractor: Environmental Research Group (ERG)

- -Team includes PG Environmental, Horsley Witten Group, & Paradigm Environmental
- -Overall technical support including data analyses, water quality endpoints, watershed and receiving water modeling

303(d)-listed Water Bodies in Watershed

All category 5 impairments (TMDL required) 2014

Phosphorus high in urban stormwater

- Soil particles
- Leaf litter
- Fertilizer
- Pet waste

Phosphorus and chlorophyll grab sample locations **2015-2017**

Chl Chlorophyll-a sampling location

TP TP grab sampling location

- Sampling and Analysis Plans each year
- SOPs
- Approved by EPA and DEP

Autosamplers

Phase 1 - Draft Report Completed June 2017

- Phase 1 Draft Report compiles project tech memos:
 - Conceptual Model memo
 - Data Review memo
 - Water Quality Targets memo
 - Model Approach Alternatives memo

Calibration of the BATHTUB Model

- Selection of critical period (2007-2016)
 - Complete
- Calibration of reach loads (2007-2016)
 - Complete
- Calibration of BATHTUB model (2005)
 - Original 3 critical reaches expanded to 5 reaches
 - Upper and Lower Basin split into two parts

Preliminary results

Phosphorus Load Reductions

- Critical Period of Interest
 - ▶ 10-year period from 2007 to 2016
 - ▶ Includes 2 wet years (2008, 2011), 2 dry years (2015, 2016)
 - Watershed Phosphorus Loading Estimates for Critical Period
 - Average annual flows and loads from land loads, groundwater, sediment, CSO/SSOs
 - Attenuated loads from the tributaries, unattenuated loads from direct discharges to segments
- Very Preliminary Results indicates SW P load reductions of 40-60% may be needed to attain nutrient related WQS.

Stormwater Management Strategies Opti-Tool

► GOALS:

- ▶ Develop a step-by-step, high-level approach
 - Generalize approach
 - Treating impervious areas
 - Structural BMPs only
- Demonstrate cost-benefits of optimization at sub-watershed scale (pilot watershed demonstration)
 - Include all storm events using hourly rainfall to assess cumulative benefits (2007-2016)
 - Develop most cost-effective solutions for varying TP load reductions
- Provide real-world SW control retrofit examples

Big themes for cities and towns

- **Act now.** Don't miss opportunities now for cost effective solutions. These targets may get turned into strict requirements later.
- Look for "low-hanging fruit", for example:
 - Install green infrastructure during routine road work
 - Maximize benefit of non-structural practices like street sweeping and leaf collection
- Code and ordinance review, coordination and streamlining
- Need for adequate funding, innovation in funding schemes, including stormwater utilities.

Green Infrastructure Can Reduce Effective Impervious Cover

Data from UNH Stormwater Center

Berry Brook, NH

USGS study: Leaf removal and phosphorus in Madison WI

GRAPHICAL ABSTRACT

W. R. Selbig (2016). Evaluation of leaf removal as a means to reduce nutrient concentrations and loads in urban stormwater. *Science of The Total Environment*, 571.

Our next steps: MET grant

- Work with EPA and municipalities to share information, best practices
- Meet with mayors and other officials
- Assist with job of education, through presentations, social media, etc.
- Continue to advocate for the most beneficial solution for the river system

