MDPH Mystic River Watershed Cyanobacteria Sampling 2010

Michael Celona, R.S.

MA Department of Public Health
Bureau of Environmental Health
Environmental Toxicology Program

Overview

- Harmful Algae Blooms
- MDPH Harmful Algae Bloom Project
- Spy Pond and Ell Pond 2010 Data Review
- Next Steps

What are Harmful Algae Blooms (HABs)?

- In fresh water, cyanobacteria (blue-green algae) under certain environmental conditions, can grow at a rapid rate, resulting in an algae bloom.
- In New England's marine waters, the marine plankton Alexandrium is responsible for algae blooms commonly known as red tide.
- Some types of these organisms can produce toxins harmful to people and animals. Blue-green algae can also be a skin irritant.
- When they become concentrated in the water, we call them Harmful Algae Blooms.

Pictures of Freshwater HABs

Horn Pond- 2009

Spy Pond- 2010

CDC Cooperative Agreement

- In 2008, MA was one of 10 states awarded funding from CDC to conduct HAB monitoring.
- MA is the only New England state.
- The primary goal is to evaluate potential health impacts from HABs by collecting and analyzing environmental and health data.
- CDC is interested in both human and animal health data (e.g., fish kills, pet poisonings).

What are Health Effects of HABs? Freshwater

- Contact with freshwater HABs may cause skin and eye irritation; incidental ingestion while recreating may cause gastrointestinal symptoms.
- In freshwater, different genera of cyanobacteria are capable of producing toxins.
 - Microcystin exposure to high levels can cause liver damage.
 - Anatoxin exposure to high levels can cause neurological damage.

Toxins

Toxin group¹	Primary target organ in mammals	Cyanobacterial genera ²
Cyclic peptides		
Microcystins	Liver	Microcystis, Anabaena, Planktothrix (Oscillatoria), Nostoc, Hapalosiphon, Anabaenopsis
Nodularin	Liver	Nodularia
Alkaloids		
Anatoxin-a	Nerve synapse	Anabaena, Planktothrix (Oscillatoria), Aphanizomenon
Anatoxin-a(S)	Nerve synapse	Anabaena
Aplysiatoxins	Skin	Lyngbya, Schizothrix, Planktothrix (Oscillatoria)
Cylindrospermopsins	Liver ³	Cylindrospermopsis, Aphanizomenon, Umezakia
Lyngbyatoxin-a	Skin, gastro-intestinal tract	Lyngbya
Saxitoxins	Nerve axons	Anabaena, Aphanizomenon, Lyngbya, Cylindrospermopsis
Lipopolysaccharides (LPS)	Potential irritant; affects any exposed tissue	All

MDPH Guidelines for Freshwater

- MDPH developed a protocol with guidelines for issuing advisories in response to HABs (www.mass.gov/dph/environmental_health)
- Advisories are recommended when:
 - A visible cyanobacteria scum or mat is present;
 - A cell count exceeds 70,000 cells/mL; or
 - A microcystin toxin level exceeds 14 ppb

Overall Goals of MDPH Algae Project

- Monitor selected water bodies with a history of blooms (e.g. Spy Pond in Arlington)
- Respond to reports of blooms and collect samples as necessary (e.g. Ell Pond in Melrose)
- Conduct health surveillance for individuals exposed to cyanobacteria
- Limit exposures to humans and animals by recommending advisories as warranted

Spy Pond, Arlington

- Sample was collected near a public boat ramp
- No swimming is allowed in the pond, but anecdotal reports suggest it takes place
- The Boys and Girls Club conducts boating lessons

MDPH Spy Pond Routine Data Collection

- Routine Collection Locations
 - Collected a water sample on a weekly basis during summer
 - Collection continues into fall if a bloom exists
- Analyzed for:
 - Cyanobacteria ID and cell count
 - Microcystin toxin analysis
 - Water quality nutrients

Spy Pond Cell Counts

•Advisory issued August 17th and rescinded December 14th.

Cyanobacteria Diversity & Dominance at Spy Pond

- Diversity
 - 60% of samples contained 3 or more genera
- Example of sample diversity
 - Sample collected 10/11
 - Total cell count: 113,000
 - 53,000 Aphanizomenon
 - 47,000 Microcystis
 - 6,000 Coelosphaerium
 - 3,900 Aphanocapsa
 - 3,100 Anabaena

- Weeks of Dominance
 - Microcystis (13)
 - Aphanizomenon (10)
 - Gleocapsa (1)
 - Gomphosphaeria (1)
 - Aphanothece (1)
 - Coelosphaerium (1)
- Microcystis dominant July-September
- Aphanizomenon dominant October-November

Ell Pond, Melrose

- Sample was collected at Ell Pond Park
- No swimming is allowed in the pond

Ell Pond Cell Counts

Advisory issued September 23rd and rescinded November 2nd.

Health Surveillance

- Visited Spy Pond, spoke with BOH, and provided literature on HABs and potential health concerns
- Mailed information on bloom and potential health concerns to area hospitals and veterinarians; provided veterinarians with poster

Next Steps

- Further evaluate 2009 and 2010 data
- Plan for 2011 sampling

MDPH Contact Information

- Suzanne K. Condon, Principal Investigator
- Michael Celona, Algae Project Manager
- Vanessa Yandell, Algae Project Coordinator
- BEH Telephone (617) 624-5757 or (800) 240-4266

